简析IGBT过流保护
电源Fan · 2017-03-15
IGBT器件的发射极和栅极之间是绝缘的二氧化硅结构,直流电不能通过,因而低频的静态驱动功率接近于零。但是栅极和发射极之间构成了一个栅极电容CGs,因而在高频率的交替导通和关断时需要一定的动态驱动功率。小功率IGBT的CGs一般在10~l00pF之内,对于大功率的绝缘栅功率器件,由于栅极电容CGs较大,在1~l00pF,甚至更大,因而需要较大的动态驱动功率。
IGBT栅极电压可由不同的驱动电路产生,栅极驱动电路设计的优劣直接关系到由IGBT构成的系统长期运行可靠性。正向栅极电压的值应该足够令IGBT产生完全饱和,并使通态损耗减至最小,同时也应限制短路电流和它所带来的功率应力。
IGBT正栅压VGE越大,导通电阻越低,损耗越小。但是,如果VGE过大,一旦IGBT过流,会造成内部寄生晶闸管的静态擎柱效应,造成IGBT失效。相反如果VGE过小,可能会使IGBT的工作点落人线性放大区,最终导致器件的过热损坏。在任何情况下,开通时的栅极驱动电压,应该在12~20V之间。
IGBT的栅极通过一层氧化膜与发射极实现电隔离。由于此氧化膜很薄其击穿电压一般只能达到20—30V。因此栅极击穿是IGBT失效的常见原因之一。在应用中有时虽然保证了栅极驱动电压没有超过栅极最大额定电压但栅极连线的寄生电感和栅极集电极间的电容耦合也会产生使氧化层损坏的振荡电压。为此。通常采用绞线来传送驱动信号以减小寄生电感。在栅极连线中串联小电阻也可以抑制振荡电压。
IGBT负载短路下的几种后果
(1) 超过热极限:半导体的本征温度极限为250℃,当结温超过本征温度,器件将丧失阻断能力,IGBT负载短路时,由于短路电流时结温升 高,一旦超过其热极限时,门级保护也相应失效。
(2) 电流擎住效应:正常工作电流下,IGBT由于薄层电阻Rs很小,没有电流擎住现象,但在短路状态下,由于短路电流很大,当Rs上的压降 高于0.7V时,使J1正偏,产生电流擎住,门级便失去电压控制。
(3) 关断过电压:为了抑制短路电流,当故障发生时,控制电路立即撤去正门级电压,将IGBT关断,短路电流相应下降。由于短路电流大, 因此,关断中电流下降率很高,在布线电感中将感生很高的电压,尤其是在器件内封装引线电感上的这种感应电压很难抑制,它将使器件有过电流变为关断过电压而 失效。
IGBT过流保护方法
(1) 减压法:是指在故障出现时,降低门级电压。由于短路电流比例于外加正门级电压Ug1,因此在故障时,可将正门级电压降低。
(2) 切断脉冲方法:由于在过流时,Uce电压升高,我们利用检测集电极电压的方法来判断是否过流,如果过流,就切断触发脉冲。同时尽 量采用软关断方式,缓解短路电流的下降率,避免产生过电压造成对IGBT的损坏。