走进ASML光刻机工厂,世界上最贵精密仪器出厂地
显示世界 · 2018-06-03
2002年SMEE成立,是中国政府为了填补光刻机空白而立项。上海微电子装备公司总经理贺荣明去德国考察时,有工程师告诉他:“给你们全套图纸,也做不出来。”贺荣明几年后理解了这句话。
光刻机,被称为现代光学工业之花,其制造难度之大,全世界只有少数几家公司能够制造。其售价高达7000万美金。用于生产芯片的光刻机是中国在半导体设备制造上最大的短板,国内晶圆厂所需的高端光刻机完全依赖进口。
在能够制造机器的这几家公司中,尤其以荷兰(ASML)技术最为先进。价格也最为高昂。光刻机的技术门槛极高,堪称人类智慧集大成的产物。
“十二五”科技成就展览上,上海微电子装备公司(SMEE)生产的中国最好的光刻机,与中国的大飞机、登月车并列。它的加工精度是90纳米,相当于2004年上市的奔腾四CPU的水准。国外已经做到了十几纳米。
光刻机制造难度有多大?
光刻机跟照相机差不多,它的底片,是涂满光敏胶的硅片。电路图案经光刻机,缩微投射到底片,蚀刻掉一部分胶,露出硅面做化学处理。制造芯片,要重复几十遍这个过程。
位于光刻机中心的镜头,由20多块锅底大的镜片串联组成。镜片得高纯度透光材料+高质量抛光。SMEE光刻机使用的镜片,得数万美元一块。
ASML的镜片是蔡司技术打底。镜片材质做到均匀,需几十年到上百年技术积淀。
“同样一个镜片,不同工人去磨,光洁度相差十倍。”SMEE总经理贺荣明说,他在德国看到,抛光镜片的工人,祖孙三代在同一家公司的同一个职位。
另外,光刻机需要体积小,但功率高而稳定的光源。ASML的顶尖光刻机,使用波长短的极紫外光,光学系统极复杂。有顶级的镜头和光源,没极致的机械精度,也是白搭。光刻机里有两个同步运动的工件台,一个载底片,一个载胶片。两者需始终同步,误差在2纳米以下。两个工作台由静到动,加速度跟导弹发射差不多。贺荣明说:“相当于两架大飞机从起飞到降落,始终齐头并进。一架飞机上伸出一把刀,在另一架飞机的米粒上刻字,不能刻坏了。”而且,温湿度和空气压力变化会影响对焦。“机器内部温度的变化要控制在千分之五度,得有合适的冷却方法,精准的测温传感器。”贺荣明说。SMEE最好的光刻机,包含13个分系统,3万个机械件,200多个传感器,每一个都要稳定。像欧洲冠军杯决赛,任何一个人发挥失常就要输球。
据cnBeta、环球网、快科技等多家媒体证实,近日长江存储从荷兰阿斯麦(ASML)公司订购的一台光刻机已抵达武汉。这台光刻机价值高达7200万美元,约合人民币4.6亿元。
另据日经亚洲评论(Nikkei Asian Review)上周报道,中芯国际也向阿斯麦下单了一台价值高达1.2亿美元的EUV(极紫外线)光刻机。这台机器预计将于2019年初交货。
虽然是买别人的东西,但是这两条信息还是足够令国人兴奋,毕竟这种机器咱们造不出来,人家不卖给咱们,自己的芯片制造就搞不定。
上面这个就是ASML光刻机的截面图,这台机器价值不菲。事实上中国的芯片制造商们要想量产7nm及其以下的工艺的芯片,就必须引入EUV光刻机。
目前全球只有一家企业在光刻机市场上占据了80%的份额,就是处于荷兰的ASML,旗下所研发的EUV光刻机曾售价高达1亿美元一台,而且还不一定有货。皆因每台光刻机的装配大约需要50000个零件左右,预计ASML2018年面向全球的产量仅为12台,也就是1个月只能有1台出售给半导体厂商。国际上著名的芯片制造商如Intel、台积电、三星都是它名下的股东。
阿斯麦公司ASML Holding NV创立于1984年,是从飞利浦独立出来的一个半导体设备制造商。前称ASM Lithography Holding N.V.,于2001年改为现用名,总部位于荷兰费尔德霍芬,全职雇员12,168人,是一家半导体设备设计、制造及销售公司。
接下来我们
走进ASML光刻机工厂
看看世界上最贵精密仪器出厂地
写在前面
目前全球只有一家企业在光刻机市场上占据了80%的份额,就是处于荷兰的ASML,旗下所研发的EUV光刻机曾售价高达1亿美元一台,而且还不一定有货。皆因每台光刻机的装配大约需要50000个零件左右,预计ASML2018年面向全球的产量仅为12台,也就是1个月只能有1台出售给半导体厂商。国际上著名的芯片制造商如Intel、台积电、三星都是它名下的股东。
近日摩尔定律出现重大突破。外资摩根大通最新报告表示,半导体设备厂ASML确认1.5nm制程的发展性,支撑摩尔定律延续至2030年!
重量级分析师一致预期,台积电与三星新一轮军备竞赛将开打,并以制程领先的台积电胜算较大。
摩尔定律是指半导体制程每18个月,就会推进一个世代。由于晶体管愈做愈小、电路线宽愈来愈窄,几乎已达到物理极限,一度引起业界忧心半导体先进制程将面临无法继续升级的问题。
摩根大通科技产业研究部主管哈戈谷指出,ASML更坚定摩尔定律可延伸至1.5纳米,支持半导体产业至少发展至2030年。
此外,ASML将在3纳米与更先进制程采用高数值孔径(NA)光学系统;过去艾斯摩尔为发展NA系统,收购德国卡尔蔡司子公司蔡司半导体。如今外资圈消息进一步证实,ASML将拓展3纳米以下技术。
异康集团暨青兴资本首席顾问杨应超解读,ASML技术进展是半导体业一大突破,有利整个大产业。而在7纳米制程已开打军备竞赛的台积电和三星,战况将更激烈。
Substance Capital合伙人暨基金经理人陈慧明指出,台积电能维持产业龙头地位,靠的是制程不断进步,因此ASML开展1.5纳米制程,不仅有利台积电巩固优势,“对第一名最有利”,也缓解市场担忧。
台积电规划,导入极紫外光(EUV)的7纳米强化版会于明年量产;全数采用极紫光外光的5纳米,则会在2020年量产。
一、引言
ASML脱胎于飞利浦光刻设备研发小组。飞利浦从1971年开始,在此前开发的透镜式显影装备基础上,开发透镜式非接触光刻设备。虽然在1973年成功推出新型光刻设备,在整体性能研发方面取得一定成功,但由于成本高昂,且存在一系列技术问题,很难对外推广。同时,其他设备商在解决接触式光刻机的缺陷问题上用不同的技术路径取得了突破。于是,飞利浦计划要关停光刻设备研发小组。
这时ASMI找上门来要求合作开发生产光刻机。ASMI是什么来头呢?这里有必要介绍一下。ASMI(Advanced Semiconductor MaterialsInternational)是由Arthur del Prado在1964年创办,初时是一家半导体设备代理商。Arthur del Prado非常富有战略眼光且专注半导体,很快在半导体业界风生水起,并于1971年公司开始转型进入封装设备生产,慢慢扩大到前道设备,1976年公司的PECVD进入市场,奠定ASMI作为原始设备生产商的地位。1981年公司成功上市。
ASMI兴冲冲而来,没想到热脸贴冷屁股。飞利浦已经心灰意冷了,但耐不住的Arthur del Prado的软磨硬泡,于是同意与Advanced Semiconductor Materials B.V.合作,在1984年4月成立Advanced Semiconductor Material Lithography Holding N.V.。
ASML当时面临三大问题,一个是技术落后,飞利浦公司先前研发的技术在漫长的等待中已经过时,远不能满足客户要求;二是市场已经饱和,竞争非常激烈,强手如林,日本的Nikon、Canon、Hitachi,美国的GCA、SVG、Ultratch、ASET、Perkin-Elmer、Eaton,民主德国的Zeiss等相继推出了自己的光刻机产品;三是资金严重匮乏。
据说当时员工都对ASML的未来没有信心。现在ASML公司官方网站里的“Our History”里,都用了“inauspiciously”这个词描写当时的情况。
是什么原因让ASML杀出重围,并成长为光刻机领域的绝对龙头,全球市占率达到近70%,垄断高端EUV光刻机市场。
观其成长之路,可谓一段产业传奇。成立之初,由于技术落后和资金不足,加上产业周期性衰退,几乎陷入破产境界;1995年上市,充裕的资金让公司发展提速;2000年推出TWINSCAN双工件台光刻机,一举奠定霸主地位;进入EUV时代,得到大客户支持,更是一骑绝尘。可以说ASML的龙头之路既与产业大环境密切相关,也是其自身重视研发,对研究创新始终采取开放态度的必然结果。
二、光刻机技术发展及未来趋势
在说ASML的故事前,还是先说说光刻机的发展情况。
光刻机是集成电路制造中最精密复杂、难度最高、价格最昂贵的设备,用于在芯片制造过程中的掩膜图形到硅衬底图形之间的转移。(上刻出晶体管器件的结构和晶体管之间的连接通路。)
集成电路在制作过程中经历材料制备、掩膜、光刻、刻蚀、清洗、掺杂、机械研磨等多个工序,其中以光刻工序最为关键,因为它是整个集成电路产业制造工艺先进程度的重要指标。
光刻机的发展经过了一个漫长的过程,1960年代的接触式光刻机、接近式光刻机,到1970年代的投影式光刻机,1980年代的步进式光刻机,到步进式扫描光刻机,到浸入式光刻机和现在的EUV光刻机,设备性能不断提高,推动集成电路按照摩尔定律往前发展。
曝光光源方面,从1960年代初到1980年代中期,汞灯已用于光刻,其光谱线分别为436nm(g线)、405nm(h线)和365nm(i线)。然而,随着半导体行业对更高分辨率(集成度更高和速度更快的芯片)和更高产量(更低成本)的需求,基于汞灯光源的光刻工具已不再能够满足半导体业界的高端要求。
1982年,IBM的Kanti Jain开创性的提出了“excimer laser lithography(准分子激光光刻)”,并进行了演示,现在准分子激光光刻机器(步进和扫描仪)在全球集成电路生产中得到广泛使用。在过去的30年中,准分子激光光刻技术一直是摩尔定律持续推进的关键因素。使得芯片制造中的最小特征尺寸从1990年的500nm推进至2016年10nm,台积电和三星都宣称2018年要量产7nm产品。
光刻系统中常用的DUV准分子激光器是248nm波长的KrF和193nm波长的ArF。1980年代准分子激光光源的主要制造商是Lambda Physik(后并入Coherent, Inc.)和Lumonics。自1990年代中期以来,Cymer公司(原ASML合作伙伴,2013年并入ASML)和Gigaphoton Inc.(尼康光刻机的光源合作伙伴)已成为光刻设备制造商的准分子激光光源的主要供应商。
使用193nm ArF光源的干法光刻,其工艺节点可达45/40nm,进一步采用浸液式光刻、配合比较激进的可制造性设计(DfM)等技术后,可达28nm;而要进到更高端制程时,就必须采用辅助的多重曝光(Multiple Patterning,MP)。然而使用多重曝光会带来两大问题:一是光刻加掩膜的成本上升,而且影响良率,多一次工艺步骤就是多一次良率的降低;二是工艺的循环周期延长,多重曝光不但增加曝光次数,而且增加刻蚀(ETCH)和机械研磨(CMP)工艺次数,也就是把光刻的步骤分了点给ETCH和CMP。对于使用浸液式光刻+多重图形曝光的193nm ArF光刻机可以将工艺缩小到10nm。
而EUV作为下一代技术的代表,不需要多重曝光,一次就能曝出想要的精细图形,没有超纯水和晶圆接触,在产品生产周期、OPC的复杂程度、工艺控制、良率等方面的优势明显。但是也需要继续优化。特别是EUV的曝光方式,降低EUV掩膜版的缺陷,以及晶圆产率方面还有很大发大空间。目前市场有多款EUV机型并开始出货,剑指7nm、5nm。
虽然EUV光刻机已经开始出货,但由于其成本昂贵且交期长,一般的公司可能暂时用不上甚至也买不到机台,所以现在光刻机市场主要以193nm ArF光刻机为主。
如果工艺制程继续延伸到1nm或以下,如果EUV单次曝光已经无法满足今后工艺要求的话,会不会出现EUV+多重曝光呢?
电子束直写技术还有可能重出江湖吗?虽然它曝光一片晶圆的时间有点恐怖。
目前光刻技术的发展方向主要表现为缩短曝光光源波长、提高数值孔径(NA)和改进曝光方式。但不管技术如何发展,产率肯定是要考量的。
三、光刻机“寡头”市场
随着时间的推移,工艺技术的进步,Hitachi、GCA、SVG、Ultratch、ASET、Perkin-Elmer、Eaton、Zeiss等,有的已经退出光刻机市场,有的被收购,有的转战先进封装用光刻机市场。
目前全球半导体前道用光刻机的生产厂商有4家,分别是ASML、Nikon、Canon和上海微电子(SMEE),其中尤其以ASML为佳,一家独占7成的市场。
2017年全球晶圆制造用光刻机台出货不足300台,其中ASML共就出货198台,占全球近7成的市场。其中EUV光刻机11台,ArFi光刻机76台,ArF光刻机14台,KrF光刻机71台,i-line光刻机26台。2017年单台EUV机台平均售价超过1亿欧元,2018年一季度的售价更是接近1.2亿欧元,而且是有价无货。
2017年Nikon出货26台光刻机,占有率不足10%,其中ArFi光刻机6台,ArF光刻机8台,KrF光刻机2台,i-line光刻机10台。(笔者注:从1980年代,Nikon就开始进入半导体制造领域,在近40年的光刻机研究与开发中,已向世界各国或地区销售了各种光刻机超过9000多台,曾创下年销量900台的纪录,不过自2008年和2009年丢失台湾、韩国市场,公司开始一蹶不振,出货量急速下滑。)
2017年Canon出货70台,占比24%,且集中在低端产品,其中KrF光刻机20台,i-line光刻机50台。(笔者注:从1970年代,Canon公司就涉足半导体制造设备领域, 凭借世界领先的光学及精密机械生产技术,从研制2:1缩小投影和接触接近式光刻设备起步,先后向世界市场投放了PLA系列步进式、MPA系列等倍扫描式、投影式和FPA系列步进缩小投影式、扫描式三大系列的光学光刻设备约10000台,由于公司在技术上的决策失误,从2008年逐步退出半导体用光刻机市场。)
从上图可以看出,2011年开始,ASML按销售金额(不含服务费入)计算,就一直占有全球6成以上的市场。而Nikon尽管在机台出货数量上不如Canon,但是由于Canon的出货机台都是低端的光刻机台,所以Nikon的年度销售收入相比Canon要高。
2017年全球光刻机总出货294台,ASML出货198台,占有68%的市场份额。EUV光刻机方面,ASML占有率100%。在ArFi机台方面,全球销售82台,ASML以76台,占有率超过92%。ArF机台方面,全球销售22台,ASML占比64%。也就是说,在高端光刻机方面,ASML占有88%的市场。
2011-2017年全球光刻机总出货1920台,ASML出货1209台,占有63%的市场份额。EUV光刻机方面,ASML占有率100%。在ArFi机台方面,全球销售612台,ASML以539台,占有率超过88%。ArF机台方面,全球销售95台,ASML占比52%。也就是说,在高端光刻机方面,ASML占有84%的市场。
目前全球知名厂商都是ASML的客户,英特尔、三星、台积电都在全力支持ASML在EUV光刻机方面的研发。Nikon在EUV机台方面只在2008年第4季出货一台,再也没有任何消息。而Canon从2010年开始就完全退出了ArF领域,只保有低端机出货,转而发力OLED光刻机市场。
四、巨人ASML成长记分析
1、发展历程
1984年飞利浦与ASMI合资成立Advanced Semiconductor Material Lithography Holding N.V.(先进半导体材料光刻控股有限公司);
1984年推出首款产品:PAS2000,采用油压驱动,技术落后同行;
1986年推出首台步进式设备PAS2500/10,并和镜头制造商Carl Zeiss建立密切合作关系;
1989年推出PAS5000系统;
1991年推出PAS5500系统,这是公司的重大技术突破;
1995年3月在 NASDAQ与阿姆斯特丹交易所上市;
1999年6月收购MicroUnity Systems Engineering Inc.业务部门MaskTools,使得公司在先进技术节点方面可以提供最完整的解决方案,改善了公司光刻机的扫描和成像能力,显著增加了聚集深度,扩大了光刻窗口,提高了芯片产量;
2000年8月首台TWINSCAN系统光刻机出货,以获得最大生产力;
2000年12月获得日本首个订单:PAS 5500/750E DUV和PAS 5500/400C i-line;
2001年5月完成对Silicon Valley Group, Inc.(SVG)的收购,获得了投影掩罩瞄准技术、扫描技术,极大的提升了公司产品的技术,并在美国拥有了研发生产基地;
2001年6月由ASM Lithography Holding N.V.更名为ASML Holding N.V. ;
2007年3月8日完成收购光刻解决方案提供商Brion Technologies,Brion的计算光刻技术(设计验证,分辨率增强技术RET以及光学邻近效应修正OPC)能使半导体制造商得以对制作出的集成电路图形进行仿真,并可更正掩模图形,从而优化制造工艺,提高成品率;
2007年推出首台浸液式设备TWINSCAN XT:1900i;
2010年推出首台EUV设备TWINSCAN NXE:3100系统,与之前的光刻机相比,能够使用更短波长的光,使得客户可以制造更小规格的产品,在同一块芯片上集成更多的晶体管;
2012年公司提出“客户联合投资专案”(Customer Co-Investment Program),获得英特尔、台积电、三星的响应,以23%的股权共筹得53亿欧元资金;
2013年5月30日完成对光源提供商Cymer的收购,为公司量产EUV设备起决定性作用;
2016年11月5日收购Carl Zeiss SMT的24.9%股权,以强化双方在半导体微影技术方面的合作,发展下一代EUV微影系统。
2016年11月22日完成对汉微科Hermes Microvision收购,以强化对半导体制造商的高科技服务;
2017年TWINSCAN NXE:3400B机台正式出货,产率为125wph 300mm晶圆。
下面笔者就已公司发展历程来进行解读,说说ASML这个光刻机巨人是如何炼成的。
2、上市、资金与并购、技术
半导体产业属于资金密集型、技术密集型产业,光刻机作为推动摩尔定律最关键的设备,研发新产品时更需要庞大的资金投入。ASML成立之初也面临着技术落后和资金短缺的问题。有消息称,1992年在遭遇半导体产业周期性衰退时,公司资金链断裂,几乎破产会闭。幸亏股东飞利浦及时出手相救,加上公司的轻资产战略,才涉险过关。
为了解决资金问题,1995年3月,公司在阿姆斯特丹和美国纳斯达克(NASDAQ)交易所同时上市,充裕的资金一方面增强了公司研发能力,同时也让公司可以进行产业并购,以完善公司的技术,促进光刻技术的发展。
1999年6月收购MicroUnity Systems Engineering Inc.旗下业务部门MaskTools,使得公司在先进技术节点方面可以提供最完整的解决方案,改善了公司光刻机的扫描和成像能力,显著增加了聚集深度,扩大了光刻窗口,提高了芯片产量;2001年5月完成收购Silicon Valley Group, Inc.(SVG),掌握了投影掩罩瞄准技术、扫描技术,极大的提升了公司产品的技术,并在美国拥有了研发生产基地;2007年3月完成收购光刻解决方案提供商Brion Technologies,掌握了计算光刻技术(包括分辨率增强技术RET以及光学邻近效应修正OPC),计算光刻技术能使半导体制造商得以对制作出的集成电路图形进行仿真,并可更正掩模图形,从而优化制造工艺,提高成品率,涉足的领域包括设计验证;2013年5月30日完成对光学技术提供商Cymer的收购,为公司量产EUV设备提供决定性信用;2016年11月5日收购Carl Zeiss SMT的24.9%股权,以强化双方在半导体微影技术方面的合作,为发展下一代EUV系统奠定基础;2016年11月22日完成收购台湾汉微科Hermes Microvision Inc. (HMI),以强化将公司的全方位微影技术解决方案(包括微影曝光系统、运算微影及量测)。
3、不断投入研发,适时更新产品
光刻机是技术含量极高的设备,厂商每年需要投入巨额的资金用于研发。ASML极其重视研发,并对研发创新始终保持开放态度。公司每年的研发投入都在营业收入的15%左右。 如此大的研发投入,也让公司能适时推出满足市场需求的新品。
ASML的光刻机产品线分为PAS系列和采用TWINSCAN系统的AT系列、XT系列、NXT系列和NXE系列。其中PAS系列光源多为高压汞灯光源,PAS 2000和PAS5000系列现已停产,PAS5500系列还在为产业发挥作用;TWINSCAN AT系列属于老型号,已经停产。市场上主力机种是XT系列以及NXT系列,为ArF和KrF激光光源,XT系列是成熟的机型,分为干式和浸液式两种,而NXT系列则是现在主推的高端机型,全部为浸液式。NXE系列EUV机台主要针对10纳米以下的制程节点。
图片来源:ASML官网
公司成立当年,推出了公司第一款产品PAS 2000型光刻机,采用油压驱动,技术落后同行。随后靠着飞利浦原有的技术积累和合作伙伴Carl Zeiss等的支持,1987年推出步进式设备PAS 2500/40,该型光刻机可与当时同类最佳机台媲美;1989年推出PAS 5000系统;1991年推出PAS 5500系统。
2000年8月出货首台TWINSCAN AT:700S,这是公司的重大技术突破,实现了双平台工作,可同时处理两张12寸晶圆,生产效率倍增。
2000年以前的光刻设备,只有一个工件台,晶圆片的对准与刻蚀流程都在上面完成。公司在 2000年推出的TWINSCAN双工件台系统,是光刻机行业的一大进步。双工件台的出现,使得光刻机能够在不改变初始速度和加速度的条件下,当一个工件台进行晶圆曝光的同时,另外一个工件台进行曝光之前的预对准工作,并在第一时间得到结果反馈,生产效率提高大约35%。双工件台系统虽然仅是加一个工件台,但技术难度却不容小觑,对工件台转移速度和精度有非常高的要求。如果工件台转换速度慢,则影响工作效率;如果工件台转换精度不够,则会影响后续的扫描光刻的正常开展。ASML的TWINSCAN导轨式双工作台系统采用其独家的磁悬浮驱动,使得系统能克服摩擦系数和阻尼系数,其加工速度和精度远超机械式和气浮式工作台。今天,ASML更是开发出了无导轨式的平面编码磁悬浮工作台系统,通过平面编码进行精确定位,从而进一步提高了工作台转换精度。
2004年推出首台浸液式设备TWINSCAN XT:1250i,2007年推出首台商用浸液式设备TWINSCAN XT:1900i,加速工艺往前推进。
在EUV方面:2010年推出首台EUV设备TWINSCAN NXE:3100系统,与之前的光刻机相比,能够使用更短波长的光,使得客户可以制造更小规格的产品,在同一块芯片上集成更多的晶体管。2013年推出TWINSCAN NXE:3300B光刻机,在13.5纳米波长理进行光刻,同轴照明解析度提升至22纳米,采用离轴照明解析度提升可达18纳米,产率为55wph;2015年推出的TWINSCAN NXE:3350B产率已经来到80wph;到2017年推出TWINSCAN NXE:3400B光刻机,解析度提升至13纳米,产率高达125wph。为了发展下一代EUV微影系统,ASML不惜投入巨资,2016年11月以10亿美元收购Carl Zeiss SMT的24.9%股权,此外还将投入巨额研发资金,首先一次性投入是2.44亿美元,之后6年将投入6亿美元,这次合作预计投入将近20亿美元,双方合作的成果就是将推出数值孔径(NA)不低于0.5的EUV光刻系统,到时产率可望达185wph。
4、外包联合开发,构建以ASML为核心产业链联合体
作为集成电路制造中最精密复杂、难度最高、价格最昂贵的设备,光刻机所需零部件多达数万个,对误差和稳定性的要求极高,如此多的零部件和核心技术,如果由一家公司垄断难以相信。
ASML从成立开始就没有做垂直整合,而是实行轻资产策略。在把控核心技术(光刻曝光技术)的同时,依靠全球产业链分工合作的方式,采取模块化外包协同联合开发策略。该策略使ASML得以集世界光刻顶级技术之大成。如光学镜头部件由德国Carl Zeiss生产,光源由美国的Cymer(现ASML子公司)提供,计量设备则由美国的Keysight(Agilent/Hewlett-Packard)制造,传送带则来自荷兰VDL集团。正是有了如此多的各细分领域中的顶尖供应商的协同创新,公司可以把主要的研发力量集中在确定客户需求和系统整合上,从而迅速占领了世界光刻机的制高点。
零部件模块化外包策略在降低了ASML 的研发风险和资金成本的同时,也构建了以ASML为核心的产业链联合体。ASML的研究团队与供应商及全球顶尖的科研机构、大学建立广泛的合作,采用开放式创新模式,大家在利己最擅长的尖端技术领域进行创新,分享专利成果和研发风险,合作伙伴也可以将这些技术用于其他领域。并且鼓励供应商在制造过程中提出改进意见,具有极高的效率和灵活性。
2012年7月9日,公司宣布一个“Customer Co-Investment Program”,该计划允许其大客户对ASML进行少数股权投资,并承诺为ASML未来计划的研发支出作出承诺。该计划在2012年10月完成,英特尔、台积电、三星总计以38亿欧元的代价取得23%的股份,并另外出资13.8亿欧元支持ASML未来五年的EUV技术研发,助其快速实现量产,以及获得EUV设备的优先购买权。也许是由于美国、韩国、中国台湾三地工程师的天马行空的想法,EUVV光刻机得以快速成熟起来。
5、主动出击,全力拓展新兴市场,扩大发展空间
成立之初,ASML的客户主要是飞利浦。
由于ASMI创办人Arthur del Prado的缘故,他认为半导体的主战场就在美国,所以ASML在成立后的第二年就在位于美国亚利桑那州的TEMPE设立据点,以把握全球最新的半导体技术动态,1986年产品正式进入美国市场,到1999年美国占其营收的35%。
1987年由于飞利浦在台湾合资成立台积电,ASML立即跟随在台湾新竹设立办事处,1999年台湾占其营收的24%。
1989年在韩国设立办事处,1990年产品正式进入,由于三星、现代和LG纷纷进入半导体产业,韩国市场迅速爆发,从1995年到1998年就出货多达100台,1999年韩国为其贡献营收高达3亿欧元,占其总营收的27%。
1999年初,ASML在香港设立地区总部,统管亚太业务;2000年依靠代理商Nissei Sangyo首次进入日本市场,包括针对130纳米的PAS 5500 / 750E(KrF 248nm)和针对280纳米的PAS 5500 / 400C(业界首款i-line)。
在中国大陆,从1988年清华大学向ASML订购了首台PAS 5000光刻机起,到2004年已经向中国发货达到100台。
1998年公司开始活跃于俄罗斯市场,2001年设备正式进入俄罗斯,目前以PAS 5500系列为主。
由于ASML对半导体新兴市场的主动出击,公司获得了极大的发展。1999年公司营收首次突破10亿欧元,达到12亿欧元;而2000年时营收更是突破20亿欧元大关,达到27亿欧元;2017年全球营收超过90亿元,其中光刻机营收约64亿美元。
五、国产光刻机的发展
1、历史
我国光刻机设备的研制起步也不晚。从1970年代开始就先后有清华大学精密仪器系、中科学院光电技术研究所、中电科45所投入研制。
清华大学精密仪器系是我国历史最悠久的工程学科院系之一,建有“精密测试技术与仪器”国家重点实验室。1970年代,研制开发了分步重复自动照相机、图形发生器、光刻机、电子束曝光机工件台等半导体设备,其中“分步相机”应用于全国100多个厂家,受到好评。
中科学院光电技术研究所是中国光刻设备的最早研制机构之一,在1980年研制出首台光刻机,分辨率3μm,属于接触/接近式;1991年研制出分辨率1um同步辐射 X-射线光刻机;1993年研制出g线1.5um的分布重复投影光刻机,产率达32wph;1997年自主研发完全“0.8-1um分步重复投影光刻机”。
中电科45所也是我国最早从事光刻机研发的骨干单位之一。当1978年世界上第一台量产型g线分步投影光刻机在美国问世后,45所就投入了分步投影光刻机的研制工作,1985年研制我国同类型第一台 g线1.5um分步投影光刻机,在1994年推出分辨率达0.8um的分步投影光刻机,2000年推出分辨率达0.5um实用分步投影光刻机。
2、现状
。2002年国家在上海组建上海微电子装备有限公司承担“十五”光刻机攻关项目时,中电科45所将从事分步投影光刻机研发任务的团队整体迁至上海参与其中。目前,我国从事集成电路前道制造用光刻机的生产厂商只有上海微电子(SMEE)和中国电科(CETC)旗下的电科装备
上海微电子装备(集团)股份有限公司(SMEE)是国内技术最领先的光刻机研制生产单位,目前已量产的光刻机有三款(见下表),其中性能最好的是90nm光刻机。2016年国内首台前道i线扫描光刻机交付用户。2017年4月公司承担的国家02重大科技专项任务“浸没光刻机关键技术预研项目”通过了国家正式验收;10月公司承担的02重大科技专项“90nm光刻机样机研制”任务通过了02专项实施管理办公室组织的专家组现场测试。
电科装备光刻机是依托原来中电科45所的技术,45所从“六五”开始一直从事光刻机的研制开发工作,先后完成我国“六五”、“八五”、“九五”期间的1.5微米、0.8微米、0.5微米光刻机的研制任务。2002年分步投影光刻机研发团队迁至上海后,目前公司主要研制生产用于100mm/150mm中小规模集成电路、二极管、三极管、电力电子器件、MEMS和其它半导体器件制造工艺的单/双面接触接近式光刻机产品。
3、重大突破
曝光系统方面:2017年6月21日,中国科学院长春光学精密机械与物理研究所牵头研发的“极紫外光刻关键技术”通过验收。长春光机所自1990年代起专注于EUV/X射线成像技术研究,着重开展了EUV光源、超光滑抛光技术、EUV多层膜及相关EUV成像技术研究,形成了极紫外光学的应用技术基础。2002年,研制国内第一套EUV光刻原理装置,实现了EUV光刻的原理性贯通。2008年02专项将EUV光刻技术列为“32-22nm装备技术前瞻性研究”重要攻关任务。以长春光机所牵头的项目研究团队历经八年的潜心钻研,突破了制约我国极紫外光刻发展的超高精度非球面加工与检测、极紫外多层膜、投影物镜系统集成测试等核心单元技术,成功研制了波像差优于0.75nm RMS 的两镜EUV 光刻物镜系统,构建了EUV光刻曝光装置,国内首次获得EUV投影光刻32nm线宽的光刻胶曝光图形,建立了较为完善的曝光光学系统关键技术研发平台。
双工件台系统:北京华卓精科科技股份有限公司(834733)是我国光刻机双工件台系统的研发单位,2015年1月,“45nm浸没式光刻机双工件台系统样机优化设计”通过了详细设计评审;2015年4月,“65nmArF干式光刻机双工件台”通过整机详细设计评审,具备投产条件。目前,65nm光刻机双工件台已获得多台订单。接下来公司要完成28nm及以下节点浸没式光刻机双工件台产品化开发并具备小批量供货能力,为国产浸没光刻机产品化奠定坚实基础。作为世界上第二家掌握双工件台核心技术的公司,华卓精科成功打破了ASML公司在工件台上的技术垄断。
中科院光电所研制出来的SP光刻机是世界上第一台单次成像达到22纳米的光刻机,结合多重曝光技术,可以用于制备10纳米工艺。SP光刻机利用表面等离子体超衍射光学光刻的原理,能刻出相当于光源波长十分之一甚至二十分之一分辨率的产品。
曝光系统和双工件台系统的成功,为我国高端光刻机的研发生产提供了奠定坚实基础。SP光刻机的研发成功,给我国光刻机装备的追赶带来了曙光。
六、如何看我国半导体装备业的发展
02重大专项以培育真正可用产品、做大做强企业为目标,实施的“下游考核上游,整机考核部件,应用考核技术,市场考核产品”考核制,保证了科研成果的实用性,成就了一大批经得起市场检验的高端产品。电科装备的化学机械抛光设备(CMP)、上海微电子的光刻机、北方华创的刻蚀机和CVD、盛美的清洗设备、中微的刻蚀机等都是非常有竞争力的,很多产品已经走出国门,或者与国外装备同步验证。
客观地讲,这些都是最近几年中国半导体装备产业的亮点。当然这些成绩也只是国产装备的初步发展,要真正做到国产高端装备全面进入市场还有很长的路要走。
首先,装备与工艺的结合问题,一直是制约国产装备进入大生产线的主要瓶颈之一。国际半导体装备厂商,特别是关键的、与工艺密切相关的前道设备厂商在工艺研发上投入巨大,一般都建有相应的工艺研发生产线。而目前国内半导体装备厂商还没有建立自己的工艺研发生产线。工艺固化到装备中,我们还有不小的距离。
第二,坚持自主研发,从零部件入手,掌控核心技术。国家重大专项对半导体设备与工艺的重视,对国产装备业来说是莫大的发展机会。我国不仅要支持关键装备的研发生产,也要支持相关重要零部件厂商。
第三,协同创新,成果共享。目前半导体装备越来越复杂,一家公司独自承担所有零部件的开发确实不易。我们应该利用整个国家、甚至于全球的资源来共同完成。
正如02重大专项技术总师叶甜春所说,发展装备业,要采取产业链、创新链、金融链有效协同的新模式,专项与重点区域产业发展规划协同布局,主动引导地方和社会的产业投资跟进支持,有效推动专项成果产业化,扶植企业做大做强,形成产业规模,提高整体产业实力。
衷心希望有更多的社会资本能投入中国半导体装备业中。半导体装备的国产化远比芯片国产化有意义!
作者:赵元闯 来源:芯思想
中国造新型显示用6代高分辨率TFT曝光机来了!
Our customers include all of the world's leading chipmakers, like Intel, Samsung, TSMC and GlobalFoundries, who use our product portfolio to manufacture a wide range of semiconductor chips.
The heart of ASML’s product portfolio is the semiconductor lithography system. The system works with a light source, which generates ultraviolet light. This light is projected through a blueprint (usually referred to as mask or reticle) of a geometric chip pattern. Optics reduce and focus the pattern onto a thin slice of silicon (the wafer) that is coated with a light-sensitive chemical. The light interacts with the chemical, effectively printing the pattern onto the wafer. When unwanted silicon is etched away, a three-dimensional structure is revealed. This process is repeated dozens of times, layer upon layer, ultimately creating a grid of hundreds of chips on a single silicon wafer.
Our lithography system is a combination of high-tech hardware and advanced software, affording exact control over the shape and size of the chip patterns it creates. But to create today’s most advanced chips, the patterns and their margins for error are so small that it is no longer sufficient to look at the lithography system in isolation. That is why we enhance system performance and reliability with predictive algorithms (which optimize the blueprint of a chip for lithography) and with metrology (which measure and correct the chip manufacturing process on our systems in real-time). We call the integration of these optimizations for chip manufacturing ’Holistic Lithography’.
Our main customer groups are makers of memory and logic chips.
Memory chips can store and process large amounts of data on electronic products and are usually classed as volatile or non-volatile. Volatile memories typically lose stored information when power is removed, while non-volatile memories retain their information. The main type of volatile memory is known as DRAM (Dynamic Random Access Memory), a low-cost, high-capacity chip that provides electronics with memory to help process information. The main type of non-volatile memory chip is known as NAND Flash, which is used to store data on electronic devices. Both DRAM and NAND Flash chips are made in dedicated memory factories.
Logic chips process information and are the brains of electronic devices. Chipmakers that design and manufacture logic chips are known as IDMs (Integrated Device Manufacturers). Contract manufacturers, known as foundries, produce chips on order for other companies.
In 1984, Philips and Advanced Semiconductor Materials International (ASMI) created a new company to develop lithography systems. Called ASML, we began our days inauspiciously, located in a wooden shed next to a Philips building in Eindhoven, the Netherlands. That same year we launched the PAS 2000 stepper, our first system. By 1985 we grew to 100 employees and moved into futuristic-looking headquarters in nearby Veldhoven. In 1986 we brought the PAS 2500 stepper to market. With its superior alignment technology, it helped to build the reputation of some of today’s leading semiconductor manufacturers. In the same year we established our very close partnership with lens manufacturer Carl Zeiss, which endures today. By 1988 we had begun to make in-roads in the Asian market, after Philips established a joint-venture foundry in Taiwan. In the United States we grew from a few employees to 84, spread over five locations. ASMI withdrew from the ASML joint venture and was bought out by Philips.
In 1991, we launched what turned out to be our breakthrough platform, the PAS 5500, which dramatically reduced manufacturing times for our customers. In 1995, Philips sold its remaining shares and ASML became a fully independent public company, listed on the Amsterdam and NASDAQ stock exchanges. It brought in the capital to fuel our growth further. We expanded our production facilities in Veldhoven. In 2000, we acquired Silicon Valley Group and added Wilton, Connecticut as an R&D and manufacturing location.
In 2001, we introduced the TWINSCAN system and its revolutionary dual-stage technology. These systems expose one wafer while the next wafer is already being measured, which maximizes the productivity of the system as well as its accuracy, boosting the value of ownership for our customers. In 2007, we shipped the first immersion system (TWINSCAN XT:1900i). With this new technology, we enabled our customers to produce even smaller chip features by projecting light through a layer of water between the lens and the wafer.
Later in 2007, we acquired BRION, a leading provider of semiconductor design and manufacturing optimization solutions. This was the start of our ‘Holistic Lithography’ strategy, which expanded ASML’s knowledge of the lithography system with critical expertise to optimize the chip manufacturing before, during and after lithography. BRION’s advanced computational models and R&D teams were integrated into our Applications business line. Another key product in the early phase of ASML’s Holistic Lithography strategy was YieldStar, our metrology system which provides real-time measurements and corrections during chip manufacturing. The first YieldStar (250D) was shipped to customers in 2008.
In 2010, we shipped the first prototype Extreme Ultraviolet (EUV) lithography tool (NXE:3100) to the research facility of an Asian chip maker. Marking the beginning of a new era in lithography, EUV lithography uses light of a shorter wavelength to manufacture smaller chip features, resulting in faster, more powerful chips. To accelerate its development, a Customer Co-Investment Program was developed in 2012 with three of our key customers – Intel, TSMC and Samsung. All agreed to contribute to the R&D of next-generation lithography technologies over five years, and acquired equity stakes in the company.
In 2013, we acquired Cymer, the San Diego-based manufacturer of lithography light sources, to accelerate the development of EUV. We shipped the second generation EUV system (NXE:3300) that year, with the third generation EUV system (NXE:3350) following in 2015. EUV lithography turned the corner in 2016, when customer began ordering our first production-ready system NXE:3400 in batches. This system could manufacture 125 wafers per hour.
Next to EUV, we continued to improve the performance of our immersion lithography systems. The NXT1970Ci and NXT1980Di, the work horses of the chip industry, were installed in customer factories around the world.
We expanded our Holistic Lithography portfolio in 2016 with the acquisition of Hermes Microvision (HMI), a leading supplier e-beam metrology tools. The joint ASML and HMI effort resulted in the first shipment of the e-beam pattern fidelity metrology system (ePfm5) in 2017. The e-beam metrology complements ASML’s fourth-generation YieldStar 375F optical metrology system, which also first shipped in 2017.