拓展:LED吸顶灯的电源选择详解

CNLED网 · 2016-07-22

普通吸顶灯电源

现在让我们先来看一下普通吸顶灯的电源。

普通吸顶灯通常采用电子镇流器,或者称为高频变压器。但是市面上的电子镇流器的质量都比较差。例如,作者就测试了一款普通吸顶灯安装了飞利浦的32W环形灯管。实测的结果如下:Pin=16W,PF=0.62。所以它只用到环形灯管50%的功率,而且功率因数也很差。作者也测试了一个9W节能灯的参数,测得Pin=8.4W,PF=0.563

二者的功率因数都不能满足>0.7的要求,但仍然在市面上大量流通。

对于LED吸顶灯的电源可以分为非隔离式和隔离式两大类:

非隔离恒流源,由于LED吸顶灯不像球泡灯那样容易被用户用手触摸到,而且由于不需要接触式导热,它的内部结构很容易把铝基板或印制板和金属底板绝缘起来,所以采用非隔离电源是可以很容易通过CE、UL等安全认证。再加上它的安装通常是由专业的电工来安装,也减小了用户触电的危险。

我们知道LED必须采用恒流源来驱动,否则由于它的负温度系数,而会使电流急剧上升导致结温升高,寿命缩短。恒流源分为线性和开关式两种。线性恒流源的优点是不会产生电磁干扰(EMI),简单,成本低。它的缺点是效率比较低。

1.采用恒流二极管的非隔离恒流源

恒流二极管是一种线性恒流源,它的恒流作用可以用来驱动LED。最简单的方法就是把恒流二极管直接和LED串联。但是我们在用于LED驱动时必须注意选择恰当的电流和耐压。

最低电压

由于恒流二极管需要一定的电压Vk才能够进入恒流,所以太低的电源电压是无法工作的。通常这个Vk大约在5-10V左右。

最高电压

由于恒流二极管必须能吸收掉电源电压的变化,对于同样的百分比,220V就要比110V的变化范围大一倍。例如对于+10%~-20%的变化范围,对于220V就意味着22+44=66V的变化范围,经过桥式整流以后这个变化还会加大1.2倍,变成79.2V。而对于110V电源,同样的变化范围只相当于39.6V的变化范围。电压越低,就意味着功耗越小,效率越高。所以可以说恒流二极管更适用于110V市电的国家。

最大电流

由于恒流二极管的功耗受到限制,所以过大的电流也是不合适的。例如1W的LED通常需要350mA,恒流二极管就很难提供。即使能够提供,它的功耗也过大而使整体效率大为降低。

恒流二极管最适用的使用场合就是交流市电供电的LED灯具,采用很多小功率LED串联,也就是高压小电流的情况是最为合适。

下图5就是一种用于吸顶灯的恒流二极管驱动源。其负载是80颗3022串联,总功率为16W。所用的恒流二极管也是恒流在60mA。假如手头的恒流二极管只有30mA的,就需要2串并联。

在这里,恒流二极管的作用就是要在输入市电电压变化时,保持输出电流不变,当然也可以消除由于LED负温度系数所引起的电流增大。但是由于恒流二极管的耐压有一定的限制,所以它所能吸收的电源电压变化也是有限的。就拿100V耐压的CRD来说,它的工作电压范围还要减去它的最小工作电压10V,可用的电压范围也就只有90V。

用在220V市电电源里,如果市电变化+10%,~-20%,就相当于整流后为290~211V,电压变化79V,在其耐压范围内。假如所用的LED为80颗,如果正向电压为3.3V,那么总电压为264V,正好相当于220V经过桥式整流以后的值。这时候恒流二极管上没有压降,但是这时候它是不能工作的而至少需要10V压降,也就是要求整流后电压为274V,市电电压为228VAC。那时候恒流二极管压降为最小,功耗也最小,只有0.03Ax10V=0.3W,整体效率为最高可达96%(当然还要考虑整流器的效率,实际上还会低一些)。如果市电增高至242VAC,那么恒流二极管电压就增高为26.4V,其功耗也增加到0.79W,这时候效率就等于91%。

如果市电电压低于228V,是不是恒流二极管就不工作呢?并不是,但的确是不恒流了,这时候它和LED就会达到一个新的平衡点,那就是二者的电压和等于市电电压经过整流后的电压。因为LED伏安特性的非线性,所以很难用公式来表示。总之,当市电电压降低时,LED中的电流就会随市电电压的降低而降低。其亮度也会跟着变暗。但是这时候恒流二极管的压降不大所以并不消耗很多功率。所以效率还是很高的。

前面假定了LED的正向压降为3.3V,实际上即使其额定为3.3V,在开机一段时间以后,由于结温的升高,正向压降就会降低至3.1V甚至3.0V。

一个采用恒流二极管的8W电源的实测结果如下表所示:

有表中可见,采用恒流二极管以后其最高效率的确可以做到非常高。是一种值得选用的电源。为了在220V得到最高的效率,看来应该串联90个以上的LED。

各种恒流二极管的参数如下表所示:

2.采用高压直接降压的开关式恒流源

由交流直接整流得到的电压是264V,这时候可以采用直接降压的高压Buck电路来恒流。

a)PAM99700

图6为采用美国PAM公司的PAM99700的高压Buck的电路图。

这个电路的特点是效率高达90%,功率因数也大于0.9以上。外部电路也很简单。可以驱动多达40个1W的LED。一个采用PAM99700的LED吸顶灯照片如图7所示。

它是采用24串7并的3014型LED,总功率16.8W。右下角的蓝色印制板是红外遥控接收器。

它的实测结果如下(图8):

b)HV9861A

最近美国Supertex公司推出了新款高压降压芯片HV9861A以取代HV9910B.它采用了均值取样从而提高了恒流精度至+/-3%。它的电路图如图9所示。

其输出电流以及效率随输入电压的变化,如图10所示。

因为电路中没有采用无源功率因数校正,所以功率因数比较低。这个电路也没有采用为减小EMI所需的滤波器,如果加上这两项以后都会降低其效率。

所有这些非隔离式电源因为在LED负载上会触摸到市电,所以有严格的安规检验,尽管采用良好的绝缘可以满足安规的要求,但是欧盟IEC 61347-2-13(5/2006)标准规定在LED负载端电压不可超过25VAC或35VDC。所以采用非隔离电源是无法出口欧盟的。

隔离式电源

最近美国TI公司推出了一种隔离式恒流源芯片TPS92070,它的电路图如图11所示。

输入:90-264VAC

输出:25V,350mA

效率:>85%

1.可调光隔离式恒流源

iW3614

其电路图如图12所示

输入:100-120VAC或220-240VAC

输出:25V,400mA

效率:>82%

PF:>0.9非调光模式,调光模式时取决于可控硅。

THD:满足IEC61000-3-2

调光兼容RC、R、RL

LT3799

今年2月美国凌特公司宣布了一个用于LED恒流驱动的IC(LT3799),它可以驱动4-100W的LED,而且本身带PFC,外置功率MOSFET开关管,反激隔离式而不需要光耦合器,外置元件减到最少,而且还可以用于可控硅调光。

这个市电恒流源因为功率大,而且可以适应4-100W的宽功率范围(这是吸顶灯的功率范围),所以一定是采用外置MOS开关管,而且也因为功率大,所以要求采用功率因数校正(PFC)。对于不同的功率,除了要选择不同的MOS管外,还要求选择不同大小的变压器。变压器加大了整个恒流源的体积和重量,降低了效率。但是这是为隔离市电所必需的。

LED吸顶灯的调光

目前全世界很多知名的LED恒流驱动芯片公司都花了很大的力气开发出了很多可以和各种可控硅调光的所谓Triac配合以进行调光的芯片。然而这也是一种相当可悲而又可笑的事。因为可控硅是上世纪六十年代的产品,本身是一种相当古老而落后的器件。它的确可以用来和白炽灯配合进行调光,可是它在调光的过程中会破坏正弦波的波形因而引起系统的功率因数降低,而且还会在线路上产生很大的干扰信号。在白炽灯调光时因为白炽灯的亮度只是由电源电压的有效值决定,所以可以跟着可控硅的导通角调光,而且对于可控硅来说,白炽灯是一个理想的纯阻负载,也不会对它的工作有什么影响。

可是换成LED以后就产生了一系列的问题,首先带整流器的LED是一个容性负载,对可控硅有很大影响,在低负载时就会不稳定触发,除非并联一个电阻。但会进一步降低系统的效率(增加1-2W功耗)。为了使得LED也能配合可控硅调光就必须把带整流器的整套恒流电源系统的功率因数提高到看上去接近纯阻负载。所以很多公司开发出有源功率因数校正芯片。使得LED整个系统的功率因数达到0.9以上。不少人误以为采用功率因数校正以后,连同可控硅在内的整个系统的功率因数都可以达到0.9以上。这完全是误解了,即使是纯阻负载接上可控硅以后功率因素也会随调光而降低。

下面是可控硅调光过程中,带功率因数校正(达0.96)的LED球泡灯的整套系统(包括可控硅在内)的功率因数的变化(附带也有白炽灯的数据以供比较)。

由表中可知,不管是经过功率因数校正的LED灯,还是白炽灯,在一开始时功率因数都可以达到0.96以上。但随着可控硅的调光,其功率因数逐步降低,到无法再调光时,功率因数低至0.48和0.566。所以作为整个系统来说,其功率因素指标是不符合美国能源之星的要求的。

全世界的各种可控硅调光器多达几十种,上百种。很多LED灯为了和这些可控硅兼容,不知道做了多少试验和改进,但最后还是吃力不讨好。由于国外的人工很贵,所以也可以认为这是不得已的做法,但是在中国完全可以采取另一些更先进的做法。

为了要对LED调光,可以有很多办法,这些方法都没有可控硅的缺点。下面介绍几种最常用的方法:

6.1采用脉宽调制PWM调光

LED是一个二极管,它可以实现快速开关。它的开关速度可以高达微秒以上。是任何发光器件所无法比拟的。因此,只要把电源改成开关恒流源,用改变脉冲宽度的方法,就可以改变其亮度。这种方法称为脉宽调制(PWM)调光法。图15表示这种脉宽调制的波形。假如脉冲的周期为tpwm,脉冲宽度为ton,那么其工作比D(或称为孔度比)就是ton/tpwm。改变恒流源脉冲的工作比就可以改变LED的亮度。

具体实现PWM调光的方法就是在LED的负载中串入一个MOS开关管(图16),这串LED的阳极用一个恒流源供电。

然后用一个PWM信号加到MOS管的栅极,以快速地开关这串LED。从而实现调光。也有不少恒流芯片本身就带一个PWM的接口,可以直接接受PWM信号,再输出控制MOS开关管。那么这种PWM调光方法有那些优缺点呢?

1.不会产生任何色谱偏移。因为LED始终工作在满幅度电流和0之间。

2.可以有极高的调光精确度。因为脉冲波形完全可以控制到很高的精度,所以很容易实现万分之一的精度。

3.可以和数字控制技术相结合来进行控制。因为任何数字信号都可以很容易变换成为一个PWM信号。

4.即使在很大范围内调光,也不会发生闪烁现象。因为不会改变恒流源的工作条件(升压比或降压比),更不可能发生过热等问题。

具体获得PWM信号的方法为在墙上的PWM开关和电位器里安装一个PWM发生器。这个PWM发生器可以很容易地用一个555芯片形成(图17)。

这个发生器的指标如下:

1.输入电源:10-36V,20mA

2.输出信号:200Hz的PWM信号,0-100%,5V(也可为10V)

3.控制路数:可控制5-10个可调光恒流源

4.线路长度:10-20m

5.开关:可直接控制220V电源开或关

所以,它需要三根线和灯具连接。假如还要开关灯具,就可以采用带开关电位器,不过这样一来总共需要有5根线连接到灯具。如果要利用原来墙上开关,就要再增加三根线,这是它的主要缺点。它的优点是可以用一个控制器来控制5-10个灯具。

6.2分段式开关调光

为了利用现有的墙上开关和墙内的两根线,台湾有一家公司推出了一种称之为EZ-Dimming的GM6182的四段开关调光不失为一种好方案。它只利用墙上的普通电灯开关就能实现4段调光,第一次开为全亮,第二次快速开关为60%亮度,第三次快速开关为40%亮度,第四次快速开关为20%亮度。这种系统的优点是可以利用普通的墙上开关实现调光。而且其功率因素高达0.92以上。没有产生干扰信号之虑。缺点是无法连续调光。还有操作麻烦一些。它实际上可以和恒流源设计在一起(图18)。

虽然红外遥控可以实现采用PWM连续调光,但在实际使用时,也可以用作分段调光。

LED吸顶灯的指标和性能

一个LED灯具最重要的性能指标就是它的整体光效。所谓整体光效就是输出光通量(以流明表示)和输入电功率之比,单位是每瓦流明数lm/W。

它不但包括了LED本身的发光效率,也包括了恒流电源的效率和泡壳的透光率。

除此以外,还有它的色温、显色指数等。

为了测试LED吸顶灯的指标,我们通常把它放进大型的积分球中,以便测量它所发出的全部光通量。并对它所发出的光谱进行分析。

现在就拿图7所示的红外遥控LED吸顶灯为例,测试它的性能指标。这是一个采用168颗3014LED的红外遥控吸顶灯。

在不加光罩时实测的结果如下。

1.整体光效

总流明数1383lm,输入交流功率=16.57W,所以整体光效=83.46 lm/W

需要说明的是其中包括了两项效率,一个红外接收器的效率,另一个是恒流电源的效率。而恒流电源的效率,单独测试的结果是89.5%(图8)。红外接收器的功耗为0.5W左右,所以实际的输入功率应该是16W。如果不用红外遥控器时,它的整体光效应该是86.43lm/W。如果再考虑电源的效率,用在LED上的电功率只有14.32W。

这样算下来可以得到96.5lm/W。这应该是LED本身的发光效率。如果改用发光效率为120lm/W的LED,那么它的整体光效就可以达到107lm/W,即使加上红外接收器的功耗,整体光效也可以超过100lm/W。

2.色温:6171K,这完全是由所用的LED决定的,如果用户要求低色温,就可以改用低色温的LED。

3.显色指数:Ra=76.2,这个指数相对较低。但是实际上目前所用的显色指数是在15种单色光上的显色指数加以平均的结果,它并不能完全代表它的显色能力。因此照明信息委员会(CIE)不推荐用CRI来测定白光LED的显色能力

4.如果加上光罩以后,它的整体光效当然会随之降低。而且会降低相当多。因此选用高透光率的光罩是很重要的事。但是透光率过高,也会使用户能够看到其中的光珠,这也是不希望的是。尤其是如果采用1W的大功率LED,就更加明显,所用采用小功率的LED(例如3014),允许用透光率高的光罩,这也是很重要的。

国外的一些大功率吸顶灯的性能如下:

Sharp吸顶灯

作者:中国LED网(CNLED网)博客专家 茅于海